
Formal Methods for Reverse Engineering Gate-Level

Netlists

Wenchao Li

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-222

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-222.html

December 18, 2013

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
18 DEC 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Formal Methods for Reverse Engineering Gate-Level Netlists

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

48

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The author would like to thank his collaborators Prof. Sanjit A. Seshia, Zach
Wasson and Wei Yang Tan from UC Berkeley, Adria Gascon, Dr.
Natarajan Shankar and Dr. Ashish Tiwari from SRI International, and
Pramod Subramanyan and Prof. Sharad Malik from Princeton University.
Some of the work done in this report could not have been possible without
their assistance and guidance. The author would also like to thank Prof.
Sanjit A. Seshia and Prof. Robert K. Brayton for reviewing this report and
giving insightful feedback. The work described in this report was supported
in part by Defense Advanced Research Projects Agency (DARPA) under
the IRIS program, and by the Hellman Family Faculty Fund.

Formal Methods for Reverse Engineering

Gate-Level Netlists

Wenchao Li

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, in partial satisfaction of the requirements for the degree of Master
of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Sanjit A. Seshia
Research Advisor

Date

* * * * * *

Professor Robert K. Brayton
Second Reader

Date

i

Contents

Contents i

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Assumptions . 3
1.4 Related Work . 4

2 Reverse Engineering Gate-Level Netlists 6
2.1 Solution Overview . 6

2.1.1 Word-Level Datapath Extraction . 7
2.1.2 Function Identification . 8
2.1.3 Example – CMP Router . 9

2.2 Problem Definition . 9
2.2.1 Preliminaries . 9

Circuits and Netlists . 9
Word-Level Datapath . 11
Formal Specification . 11
Abstract Components . 12
High-Level Description . 12

2.2.2 Problem Definition . 13
2.3 Finding Word-Level Datapath . 14

2.3.1 Word Identification . 14
Bitslice Aggregation . 14
Shape Hashing . 15

2.3.2 Word Propagation . 15
2.3.3 Discussion . 19

2.4 Functional Module Identification . 20

ii

2.4.1 Library of Abstract Components . 20
2.4.2 Matching by Property Checking . 22

Input-Output Correspondence . 22
Pattern Mining . 23
Matching by Property Checking . 26

2.4.3 Matching by Conditional Equivalence Checking 26
Generating Candidate Netlist Slices 27
QBF Formulation . 27

2.4.4 Discussion . 28
2.5 Experimental Results . 29

2.5.1 Benchmarks . 29
2.5.2 Finding Word-Level Flow . 30
2.5.3 Functional Module Identification . 34

QBF-Based Matching . 34
Property Checking with Unknown I/O Correspondence 34

3 Conclusion 37
3.1 Summary . 37
3.2 Acknowledgement . 37

Bibliography 39

iii

List of Figures

2.1 Netlist Reverse Engineering – Solution Overview 6
2.2 Overview of the Word-Level Dataflow Extraction 7
2.3 Overview of Function Identification . 9
2.4 CMP Router comprising four high-level modules 10
2.5 D-calculus Examples for Boolean “AND” and “NOT” 16
2.6 Structural Heuristics for Finding Target Words from Source Word ~w. Gates of

different function types are colored differently. 16
2.7 To check if word w = [w0, w1] propagates to word u = [u0, u1], we find potential

control signals such as a and include them as inputs in the netlist slice on which
symbolic evaluation is performed. 17

2.8 Overview of Component Matching by Property Checking 22
2.9 Request stays high until a response is received. 24
2.10 Arbiter Pattern Graphs . 24
2.11 MCS in the two arbiter pattern graphs . 25
2.12 Miter Construction and QBF Formulation . 28
2.13 CMP Router Comprising Four High-Level Modules 32
2.14 Word-Level Datapath for the Same CMP Router Design 33

iv

List of Tables

2.1 Signal Names in Arbiter Versions . 25
2.2 Benchmark Netitemize Information . 29
2.3 WordRev Statistics . 31
2.4 QBF Statistics for Different Operations . 34
2.5 Signal Mapping between WB-SPI and WB-SimpleSPI 35
2.6 Signal Mapping between WB-SPI and WB-I2C 35

1

Chapter 1

Introduction

1.1 Motivation

Systems are increasingly being constructed from off-the-shelf components acquired through
a globally distributed supply chain. There is a rising concern over the trustworthiness of
these components, especially when used in mission-critical applications. The possibility
that, a small but malicious modification could compromise the entire integrity, security
and reliability of an integrated circuit (IC), is becoming a pressing concern. For example,
the Integrity and Reliability of Integrated Circuits (IRIS) program from DARPA [3] seeks
to develop techniques for deriving functions of digital, analog and mixed-signal ICs from
limited operational specifications, as a way to ensure the overall integrity of a system possibly
constructed using multiple third-party components. Such malicious modifications, commonly
known as hardware trojans (HTs), can provide footholds for software based attacks, where
the attacks are orchestrated by colluding software [18]. They can also provide side-channels
for leaking sensitive information [23], or simply subvert the operation of the system under
special conditions (e.g. special instruction sequences that trigger the trojan) [19].

In general, modifications can be introduced at different stages of the design and fabrica-
tion flow, and efforts specifically targeted at each stage have been made to mitigate these
threats [36]. In this report, we consider the context where a logic alteration was made ei-
ther at the Register Transfer Level (RTL) or at the gate level. At the RTL level especially,
one can inject malicious behavior that can undermine the correct operation of the entire
system with only a few lines of code written in a Hardware Description Language (HDL).
Such design-time modifications are also difficiult to detect due to possible obfuscation [34]
and small physical footprints [36]. Since they may be activated only under very specific
conditions, they are unlikely to be triggered and detected in simulation or functional tests.
Even if suspicion is raised during the operation or inspection of a system, currently there is
no way to zoom into a particular portion (say the ALU unit) of a system by simply looking
at the overall gate-level netilist. Most high-level structures such as word declaration, mod-
ularization, function separation are lost once the design has undergone logic synthesis, thus

CHAPTER 1. INTRODUCTION 2

making it extremely difficult to perform targeted function search in the flattened netlist. In
this report, we present a systematic framework for automatically deriving high-level struc-
tures from the gate-level netlist of a digitial circuit. First, we formally define the problem of
reverse engineering a bit-level description into high-level description (henceforth referred to
as REHLD) of a digital circuit. We then present several techniques for solving the REHLD
problem.

Reverse engineering, if successful, can bring significant benefits. For example, identifying
a word-level datapath allows the user to navigate the netlist at a higher level. Also, such
word-level datapaths allow automatic graph-based inference techniques to be applied without
complication from low-level details (e.g. the function that a particular gate implements). On
the other hand, identifying the function (even partially) of a block of gates means one can now
perform more comprehensive analyses to it in an isolated fashion. HT detection techniques,
such as the ones presented in [18], are largely based on simulating the netlist. Therefore,
such dynamic analysis techniques can be synergetically applied with the static techniques
presented in this report, and in a more scalable manner. In addition to complementing
existing HT and counterfeit detection techniques, reverse engineering can be applied directly
to find IP violation, which is another rising concern in the semiconductor industry [14].

Algorithmic reverse engineering of an unstructured netlist, however, can be particularly
challenging due to the following reasons.

• Lack of structure. A flattened netlist does not contain any of the hierarchy or module
information that its RTL counterpart would typically have. In addition, optimization
techniques such as multi-level logic minimization, technology mapping and retiming
further destroy high-level structures in the netlist, and can result in overlapping func-
tional blocks and gate sharing.

• Large functional space. Designs can vary from one to another and the space of possible
functions that a circuit may implement quickly becomes intractable. This problem
is further exacerbated by the assumption that only scanty documentation is given,
which means well-defined and well-specified reference models are not available, thereby
making it especially difficult to reason about the function of a netlist.

• Large implementation space. In case a high-level description of a function is given,
e.g., the netlist contains an 8-bit multiplier, the space of all possible implementations
for this particular function can be again enormous. The implication is that structural
matching techniques quickly become impractical as the size of the target structure
grows.

In this report, we present a systematic framework for automatically deriving high-level
structures from the gate-level netlist of a digitial circuit, and techniques that specifically
address each of these challenges. To cope with the large functional space, we crafted a
library that contains more than a thousand commonly used components. Leveraging formal
verification techniques such as symbolic evaluation, model checking and equivalence checking,

CHAPTER 1. INTRODUCTION 3

we further address the problem of a large implementation space per function, and recover
structure from an unstructured netlist.

1.2 Contributions

To summarize, we make the following contributions:

• We present a formal definition and a systematic framework for the netlist reverse
engineering problem (REHLD), based on the notion of matching against abstract com-
ponents.

• We describe a two-stage algorithm for deriving word-level datapaths in a bit-level
netlist, which first finds candidate words and then propagates them using symbolic
evaluation.

• We present an approach for matching an unknown sub-netlist against an abstract
component library based on mining behavioral patterns from simulation or execution
traces, followed by model checking.

• We present a second approach for matching an unknown sub-netlist against a known
circuit using (conditional) equivalence checking – formulating the problem as solving
a Quantified Boolean Formula (QBF) (as opposed to SAT in traditional equivalence
checking). This formulation addresses the challenge of gate sharing in an optimized
flattened netlist.

• We apply our approach to a collection of open-source designs. In particular, we demon-
strate the effectiveness of our approach on netlists that contain up to 400,000 IBM
12SOI cells.

The rest of the report is organized as follows. We first describe the assumptions we make
in this work in Section 1.3. Aterwards, we survey related work in Section 1.4, with a focus
on algorithmic reverse engineering of netlists. Afterwards, we review background materials
and formally define the REHLD problem. We then present techniques that try to address
this problem from two angles – finding word-level datapaths in Section 2.3 and identifying
functional modules in Section 2.4. Experimental results on applying these techniques to a
number of circuit benchmarks are reported in Section 2.5. Finally, we conclude in Chapter 3.

The work described in this report is based on [22] and [21].

1.3 Assumptions

In this report, we work with the following assumptions for reverse engineeirng a gate-level
netlist.

CHAPTER 1. INTRODUCTION 4

• RTL-level description of the original design is not available.

• Only limited operational specifications (e.g., a datasheet describing the high-level func-
tionallities of a chip) are given.

• Micro-architectural and design-specific information is also not available.

• Information about how individual wires should be grouped together is only known at
the primary input and output.

• The cell library for which the netlist is synthesized from is given.

1.4 Related Work

Digital circuit designers usually proceed from a high-level description to a gate-level netlist,
and then to a physical layout and mask; it is rare to proceed in the opposite direction.
However, as noted in Sec. 1.1, the study of reverse engineering of digital circuits has been
gaining importance in recent years. We review some of the closely related work in this section.
For a general survey on the taxonomy and detection techniques of hardware trojans, we point
the readers to [36].

Hansen et al. [17] present a study of reverse engineering the well-known ISCAS-85 combi-
national circuits. They present several strategies, mostly manual, to reverse engineer circuit
functionality from a gate-level schematic. Some of these include looking for common library
components, repeated structures, computing truth tables of small blocks, and identifying bus
structures and control signals. In this report, we provide a formal definition of the reverse
engineering problem and present several automatic techniques for solving it. Particularly,
our techniques reason with components that are at a much higher level of abstraction than
those suggested by Hansen et al. Moreover, we demonstrate that they are effective in dealing
with netlists that are several orders of magnitude larger than the ones they considered.

More recently, Subramanyan et al. [35] propose several techniques to identify high-level
components such as register files, counters, adders and subtracters. Our work complements
well with their solution. In fact, words generated by their bitslice aggregation algorithm
are used as candidate words in our word propagation technique to infer more words. Our
framework also provides additional features, such as the capability of navigating the netlist
at the word level and that of handling gate sharing in module identification.

Our work does not address reverse engineering of arbitrary finite-state machine function-
ality. While any sequential circuit can be trivially viewed as a monolithic FSM, the challenge
is to be able to decompose that FSM into a set of smaller FSMs, each of which performs a
distinguishable function, thus making the resulting high-level description easier for a human
to understand. The recent work by Shi et al. [33] is a step in this direction.

A key component of our work is to find the input-output signal correspondence between
an abstract component and a block in the unknown circuit. There is not very much prior

CHAPTER 1. INTRODUCTION 5

work in this area. Mohnke and Malik [26] present a BDD-based approach for comparing
two combinational circuits whose input correspondence is not known apriori. The authors
also extended their idea to finding latch correspondence for sequential circuits, by consider-
ing the combinational circuit computing the next-state function [25]; this does not address
our problem, though, as sequential equivalence is required between the two circuits. Our
approach, based on behavioral pattern matching followed by property checking, is a novel
attempt in this direction.

Torrance and James [38] describe the practice of reverse engineering semiconductor-based
products. Their approach includes product tear-downs (stripping packaging and disassem-
bling the unit), “system-level analysis” (identifying components on a board and performing
functional analysis through probing), process analysis, and circuit extraction (deriving a
schematic from a stripped IC). Our work is complementary to this effort. Once a gate-level
schematic is derived, our techniques can then be used to identify high-level components
within the schematic.

Our technique addresses the REHLD problem for a system integrator who has not de-
signed the circuit being reverse-engineered, but instead needs to verify its functionality
prior to integration. We do not address the problem of untrusted manufacturing and IC
piracy, where the designer is trusted, which can be tackled by techniques such as EPIC [31].
Our technique is complementary to other recent work on malicious trojan circuit detection
(e.g., [18, 34]). We do not seek to find trojans, instead focusing on detecting if a sub-circuit
exhibits correct behavior which is captured by a set of logical specifications; if our approach
reports that a sub-circuit matches an abstract component, it is guaranteed to do so due to
the use of formal verification. In addition, if the sub-circuit violates some security-related
specification, our approach will report that as well.

6

Chapter 2

Reverse Engineering Gate-Level
Netlists

2.1 Solution Overview

Figure 2.1: Netlist Reverse Engineering – Solution Overview

Figure 2.1 illustrates our proposed solution to the reverse engineering problem. Start-
ing with an unknown netlist and a design document1, we approach the problem from two

1 We make no assumption on what additional information this document may provivde.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 7

angles. First, we aim to uncover word-level dataflows from the bit-level netlist. Second, we
try to associate individual parts of the netlist to components in a predefined library with
known functionalities. The composition of these two is eventually produced as a high-level
description of the netlist. In this report, we only partially address the problem of mod-
ule identification – dividing the netlist into candidate modules where each of them will be
mapped to a component in the library. We plan to pursue this direction further in future
work.

2.1.1 Word-Level Datapath Extraction

A word is simply a bounded array of bits. A word-level dataflow is then a directed graph
summarizing how one word is propagated to another word. Such word-level information is
common at the RTL level. For example, below is a snippet of Verilog codes showing some
simple word-level operations.

wire [7:0] a, b, c;

wire [3:0] d;

assign c = a & b;

assign d = {c[7:6],c[1:0]};

However, in a post-synthesis netlist, such information is lost and this is the first problem we
will tackle in this report.

Figure 2.2 illustrates our two-stage approach to this problem.

Figure 2.2: Overview of the Word-Level Dataflow Extraction

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 8

Given a bit-level netlist, the first stage identifies candidate words. We employ two tech-
niques for solving this problem, one based on bitslice aggregation [35] and the other based on
a notion called shapehashing. The first technique uses functional matching while the second
one uses structural information to group “equivalent” wires into words. We discuss these
techniques in detail in Section 2.3.1. Starting with the candidate words and other known
words (such as ones at the primary input and output), the second stage infers more words
by iteratively propagating them across gates in the netlist, by leveraging ideas in symbolic
evaluation. We describe this in detail in Section 2.3.2. These words can also be used as
boundaries to form a netlist slice, which naturally provides a divide-and-conquer strategy to
reason about separate parts of the overall netlist.

2.1.2 Function Identification

The second collection of techniques we present in this report is known as function identifica-
tion. Essentially, given a slice of the netlist, the task is to identify the functionality that this
slice implements. We reduce this problem to a verification problem – checking whether the
netlist slice is functionally equivalent to a known component. To deal with the large space
of possible functions, we created a database consisting of more than a thousand circuit com-
ponents inspired by common design patterns, ranging from simple arithmetic circuits such
as adders to communication protocols such as I2C. This component library by no means
captures all possible functionality a netlist may contain. However, it serves as a testbed for
us to experiment with and evaluate the proposed approach. We give more detail about this
library in Section 2.4.1.

The key steps of the overall approach are illustrated in Figure 2.3. Given this component
library, we pursue two different ways to functionally identify if a netlist slice matches a
component in this library.

The first is based on property checking – model checking if the netlist slice satisfies a set of
logical properties associated with the component. The added challenge here, compared with
similar verification task, is that the correspondence of inputs and outputs between the two
circuits are not known. Our solution is to use a pattern mining technique to heuristically
determine this correspondence. The general function of the unknown netlist slice is then
determined by finding the closest match in the component library, by model checking the
unknown netlist slice against each logical specification.

The second approach is based on equivalence checking. It is well known that the equiva-
lence checking problem (for combinational circuits) can be formulated as a SAT problem [16].
However, in the context of reverse engineering, gate-sharing (i.e. overlapping functional
blocks) is quite common. Specifically, this results in additional side inputs to the (smallest)
netlist slice that implements a particular function.

To address this problem, we extend equivalence checking to handle side wires, by formu-
lating the problem as a Quantified Boolean Formula (QBF). We describe this formulation
in more detail in Section 2.4.3.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 9

Figure 2.3: Overview of Function Identification

2.1.3 Example – CMP Router

To illustrate the overall approach, consider the following example.

Example 1. Consider the high-level description of a chip multiprocessor (CMP) router as
shown in Figure 2.13. It is a composition of four high-level modules. The input controller
comprises a set of FIFOs buffering incoming flits and interacting with the arbiter. When
the arbiter grants access to a particular output port, a signal is sent to the input controller
to release the flits from the buffers, and at the same time, an allocation signal is sent to
the encoder which in turn configures the crossbar to route the flits to the appropriate output
ports. Our goal is to reverse engineer such high-level information including the flow of flits
and function of FIFOs, as captured in Figure 2.13, from its gate-level netlist.

2.2 Problem Definition

We begin with some basic definitions and terminologies in Section 2.2.1, followed by the
formal problem definition in Section 2.2.2.

2.2.1 Preliminaries

Circuits and Netlists

In this report, we consider the following two abstractions of modeling digital designs.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 10

Figure 2.4: CMP Router comprising four high-level modules

A sequential circuit C is a tuple (I, O, Q, Q0, δ, θ) where

• I is a finite set of input values;

• O is a finite set of output values;

• Q is a finite set of states;

• Q0 ⊆ Q is a finite set of initial states;

• δ : Q× I → Q is the transition function, and

• θ : Q→ O is the output function.

A gate-level netlist N is a set of registers R (state-holding elements) and combinational
gates G interconnected by wires W . Each gate g ∈ G is associated with a Boolean function
fg with input pins Ig and output pins Og. Such a netlist N with I input wires and O output
wires is naturally associated with a circuit CN as follows. The input space I = 2I , the output
space O = 2O, and the state space Q = 2R. The transition and output functions are defined
correspondingly by the logic of the gates.

A collection of registers and gates naturally induces a netlist slice (denoted as n , i.e. a
portion of the original netlist. Let Cn be the circuit associated with n . In this report, we
consider slices that do not contain disjoint slices. For simplicity, we henceforth use circuit(s)
for sequential circuit(s) and netlist(s) for gate-level netlist(s).

An input-output trace (or simply, a trace) τ of a circuit is a sequence of input-output val-
ues (i0, o0)(i1, o1) . . .

2 starting from a state q0 such that oj = θ(qj) and qj+1 = δ(qj, ij) for all
j ≥ 0. A finite trace τ k of length k is then a sequence of values (i0, o0)(i1, o1) . . . (ik−1, ok−1).

2 For simplicity, we assume there is a single clock in the digital circuit and restrict ourselves to values
recorded at the rising edge of the clock.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 11

Word-Level Datapath

Words are desirable in datapath representations, especially for ease of human understanding.
In a RTL description of a circuit, many signals are moved together and operated on at the
word-level. However, identifying such word-level structures in a netlist poses significant
challenges, since all the signals are given at the bit-level.

We use the vector notation ~w = [w0, . . . , wk−1] to denote an ordered set of (bit-level)
wires with cardinality k. For convenience, we use ~wη to denote the word formed by taking
the individual bits of ~w according to and as ordered by an index array η. For example, if
η = [3, 0], then ~wη = [w3, w0].

It is also convenient to view word-level datapaths as a directed graph G, where the vertices
represent words, and an edge (~u,~v) represents the word ~u propagating to ~v (across a single
layer of gates).

Formal Specification

A formal specification of a sequential circuit N is a set S of input-output traces of that
circuit. Intuitively, every trace in S is an allowed behavior of N and every trace outside S
is disallowed.

There are broadly two ways to write a formal specification for a digital circuit. The
automata-theoretic approach is to describe S as a finite-state machine over infinite input
sequences [37]. The other approach is to write a logical formula (or set of formulas) char-
acterizing the input-output behavior of the circuit. The latter approach has gained favor in
the EDA community over the years, especially in the form of assertion languages that allow
one to specify temporal properties of a system, and which are usually slight extensions of
linear temporal logic (LTL) [29]. We follow this logic-based approach in this report. Abusing
notations, we also use S to denote the LTL formula characterizing the input-output behavior
of a circuit.

A brief overview of LTL is provided below. A LTL formula is built from atomic proposi-
tions AP , Boolean connectives (i.e. negations, conjunctions and disjunctions), and temporal
operators X (next) and U (until). Given an atomic proposition p ∈ AP , a formula in linear
temporal logic (LTL) can be constructed as follows.

ψ ::= p | ¬ψ |ψ ∨ ψ |X ψ |ψ1U ψ2

Other temporal operators F (eventually) and G (globally) can be derived using the tem-
poral operators X and U, and Boolean connectives: F ψ = trueU ψ and G ψ = ¬F ¬ψ.

For example, we can express that “every request must be eventually followed by a grant”
in LTL as G (request ⇒ F grant), where the operator G specifies that globally at every
point in time a certain property holds, and F specifies that a property holds either currently
or at some point in the future.

Given a netlist N and a LTL specification ψ, we can verify if CN |= ψ. This is commonly
known as LTL model checking. In this report, we assume the readers are familiar with the

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 12

notion of property checking and have knowledge of LTL model checking. More details about
model checking and LTL model checking can be found in [11] and [32].

Abstract Components

An abstract component α is a triple (I, O,S), where I and O are sets of input and output
signals, respectively, and S is a formal specification defining allowed input-output behavior
of the component. An instance of an abstract component α is any circuit or netlist that
satisfies the specification S of α.

We illustrate the notion of an abstract component using an example.

Example 2. Consider an arbiter servicing two (input) request lines r0 and r1 with two grant
lines g0, g1 as outputs. The abstract arbiter component would comprise the following LTL
properties:

G ¬(g1 ∧ g2)
[G F ¬(r0 ∧ r1)]⇒ G (r0 ⇒ F g0)

[G F ¬(r0 ∧ r1)]⇒ G (r1 ⇒ F g1)

The first property states that both requests cannot be granted at the same cycle. The last
two properties state that a request must eventually be granted, provided there are infinitely
many cycles where no competing requests are present – the latter assumption is the property
G F ¬(r0 ∧ r1).

High-Level Description

Informally, a high-level description of a netlist is a composition of abstract components. This
includes a mapping from netlist slices to abstract components, as well as the datapaths that
connect these components.

A library of abstract components (component library, for short) L is a set {α1, α2, . . . , αn}
of abstract components. We will assume that each abstract component is also accompanied
by at least one concrete instance; this is reasonable, as the abstract component library
is typically constructed from observations of commonly occurring components in hardware
designs.

Example 3. Examples of abstract components include common hardware design patterns
and modules such as an arbiter, FIFO buffer, adder, multiplier, content-addressable memory
(CAM), and crossbar. Abstract descriptions of finite-state machines are relevant for circuits
that implement protocols; e.g., transmitter or receiver modules implementing the Ethernet or
I2C protocols.

A high-level description (HLD) of a netlist N with input signals I and output signals O
is a tuple (I, O,Γ) where Γ is a set of instances of abstract components drawn from L plus

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 13

some “glue” logic such that the synchronous composition of these instances and the “glue”
logic is (sequentially) equivalent3 to the original netlist N .

2.2.2 Problem Definition

We are now ready to formally define the problem of reverse engineering a high-level descrip-
tion (REHLD) of a circuit.

Definition 2.1. Given

• an unknown netlist N containing cells R and G interconnected by wires W ,

• a library L = {α1, α2, . . . , αn} of abstract components,

the REHLD problem for N is to derive a high-level description N ′ = (I, O,Γ) where N ′ is
equivalent to N and Γ is a composition of instances of abstract components from L and a
collection of registers R′ ⊆ R, gates G′ ⊆ G and wires W ′ ⊆ W that make up the “glue”
logic.

Solving the REHLD problem involves multiple steps. We rephrase each of these steps
using the notation introduced in this section. There are four main steps:

• Word-level datapaths extraction: Extract word-level datapaths G from the bit-level
netlist N .

• Library definition: Constructing an abstract component library L;

• Netlist slice identification: Extract from the given unknown netlist N a set of netlist
slices n1, n2, . . . , nk, where each ni can be used as a candidate for matching against the
component library L;

• Matching against component library: Given a candidate netlist slice n and an abstract
component library L = {α1, α2, . . . , αn}, determine whether there exists an abstract
component αi such that:

(a) Input-output correspondence: Each input (respectively, output) signal of αi that
appears in the formal specification of αi is mapped 1-1 to some input (respectively,
output) signal of n .

(b) Verification: n is an instance of αi; i.e., Cn satisfies the specification Si associated
with αi.

These steps can be categorized into datapath extraction (Step 1) and function identifica-
tion (Step 2, 3 and 4). In the rest of this report, we first describe how word-level datapaths
can be extracted from a bit-level netlist. Afterwards, we present two novel approaches for
finding the mapping from netlist slices to abstract components.

3Equivalence is defined with respect to the semantics of the associated circuit CN of N .

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 14

2.3 Finding Word-Level Datapath

In this section, we describe a systematic approach for identifying word-level datapaths in
a (bit-level) netlist. The approach involves a combination of two sub-procedures – word
identification and word propagation. In word identification, the goal is to find candidate
groupings of wires that may form words. Starting with the candidate words and other
known words (such as ones at the primary inputs and outputs), the second procedure tries
to infer more words by iteratively propagating them across gates in the netlist.

2.3.1 Word Identification

We employ two techniques for finding candidate words in a netlist. The first is based on
bitslice aggregation [35], and the second is based on a notion called shapehashing. On a
high level, the first technique uses functional matching while the second uses structural
information to group “equivalent” wires into words.

Bitslice Aggregation

This technique is not our contribution and is described in detail in [35]. We briefly review
it in this section.

The function of a wire w in the netlist can be characterized by a feasible cut of w. This is
defined as a set of wires in the transitive fan-in cone of w such that an arbitrary assignment
of truth values to each wire in the set completely determines the value of w [10]. A cut is said
to be k-feasible if it has no more than k inputs. As in [35], we enumerate the set of 6-feasible
cuts for each node. Each cut then forms a bitslice rooted at w, which is a Booolean function
with a single output and no more than 6 inputs.4 Once all the bitslices are identified, they
can be grouped into equivalence classes using permutation-independent Boolean matching.
For example, a bitslice matching the function y = a ∧ b ∨ c and a bitslice matching the
function y = b ∧ c ∨ a are grouped into the same class.

Now that we have found all the duplicated bitslices across the netlist that compute
a particular function, we can look for aggregates of them that are connected in specific
patterns. Following the approach described in [35], we group all matching bitslices that (1)
have a common select signal; (2) the output of one bitslice feeds to the input of another
(e.g. carry chain in a ripple carry adder). Since aggregated bitslices are essentially circuits
that operate on sets of nodes simultaneously. We group the inputs or outputs of aggregated
bitslices together to form candidate words. Note that in the case of a carry chain, the words
are ordered in the carry direction.

4The number 6 is chosen for efficiency reasons, as the number of cuts for k > 6 becomes significantly
larger in our experience. Also, most common bitslices have less than six inputs, e.g., a full adder bitslice has
3 inputs [35].

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 15

Shape Hashing

The idea of shape hashing is to assign each wire in the netlist a shape, and then create a
hash function for all the shapes such that we can easily identify equivalent wires if they have
the same shape. The shape of a wire w is defined as the directed graph formed by the set of
gates backward reachable5 from w. A k-bounded shape is simply a shape where all the gates
in the graph are backward reachable from the root w within k steps, and at least one of
them is reachable at exactly k steps. When the directed graph is cyclic, we unroll the loops
by duplicating gates along the loops until the gates are not backward reachable from w in k
steps. In our experiments, we used all values of k ∈ {2, 3, 4}6.

To compute a hash key from each shape efficiently, we perform a depth-first-search traver-
sal of the DAG (i.e. shape) backward starting from w to produce a serialization of the DAG
using gate and wire types. Multiple children gates in the traversal are tie-broken lexico-
graphically. However, we do not check for graph isomorphism, especially one that is induced
by having gates with commutative ports, for efficiency reasons.

We further refine the equivalence classes by taking into account the relative location of
the wires. We define the distance between two wires as the smallest number of gates between
them in the netlist7. With this distance measure, we form equivalence subclasses for wires
that have the same shape. In each subclass, the wires are located to one another by at most
d distance (number of gates). The collection of wires in each subclass then forms a candidate
word. Individual wires of the same word are ordered arbitrarily.

2.3.2 Word Propagation

In this section, we describe the second important piece of the overall word-level datapath
extraction process – an algorithm for propagating words. Intuitively, we want to see if
arbitrary values of a word can propagate across a set of gates to reach a new set of wires.
To do this efficiently, we use symbolic evaluation [9], which allows the evaluation of a set of
values simultaneously in a single run.

Similar to Roth’s D-calculus [30], we redefine the functions of the logic gates in the
netlist to operate over the expanded domain {0, 1, D,D,X}, where D represents a symbolic
value in {0, 1}, D is the negation of D, and X represents an unknown/undetermined value.
Figure 2.5 shows two examples of symbolic evaluation for basic Boolean gates.

Our solution for word propagation uses a “guess-and-check” approach. Starting from
some known or candidate word (source word), we first try to find a set of wires (target word)
whose cardinality is no greater than the cardinality of the source word, that are located one
level of gates away from this word. For simplicity of discussion, we search forward for such a

5In general, one can use both forward and backward reachable gates to assess structural similarity. In
our case, the set of backward reachable gates also describes a Boolean function with a single output at w.

6As k increases further, even wires originally declared as parts of the same word become structurally
dissimilar in an optimized netlist.

7 A gate can be traversed to either from an input or from an output of the gate.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 16

Figure 2.5: D-calculus Examples for Boolean “AND” and “NOT”

(a) Forward Search (b) Backward Search

Figure 2.6: Structural Heuristics for Finding Target Words from Source Word ~w. Gates of
different function types are colored differently.

set of wires, using a procedure called FindForwardWordPairs. This set of wires constitutes
a target word, i.e. the word to propagate to. Next, we construct a netlist slice for symbolic
evaluation using SetupSymbolicEvaluation. Finally, we check if symbolic values of the source
word can indeed be propagated to the target word, by using the procedure TryPropagate.

FindForwardWordPairs, i.e., the “guessing” stage of the algorithm, consists of finding
promising target words. Figure 2.6 shows two structural heuristics we use to find target
words forward and backward. The idea is to group gates according to their function types
and group wires according to the ports they connect to. For instance, consider the source
word ~w as shown in Figure 2.6a, which is 3-bit wide, and assume that “Gate1” and “Gate2”
have the same function type, we guess two target words ~u and ~v, each of 2-bit wide. We then
check if the subword ~w[0,1] can propagate to ~u and ~v respectively, using Roth’s D-calculus.

SetupSymbolicEvaluation is the first step of the “checking” part of our algorithm. In
general, if we just evaluate the gates between the source word and the target word by
assigning X to the other inputs of these gates, we would not be able to propagate to the
target word. The key insight here, which leads to effective word propagation as we will show
in Section 2.5.2, is that if the target word is indeed a word (in the sense that it would be
naturally declared as a bit-vector in a RTL description language like Verilog), then often
there exist a few nearby (in the fan-in cone of these gates) wires which behave as control

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 17

signals. This means that for some specific concrete assignments to these control signals, the
target word will take the values of the source word (or their negation). This pattern is quite
common in digital circuits, such as in the case of a multiplexer, or a conditional assignment in
an “if-then-else” statement. In fact, even if the condition involves many signals and Boolean
operators, the synthesis tool will likely create a wire in the netlist that is the evaluation
result of this condition. We elaborate on how we make use of this insight in Figure 2.7.

Figure 2.7: To check if word w = [w0, w1] propagates to word u = [u0, u1], we find potential
control signals such as a and include them as inputs in the netlist slice on which symbolic
evaluation is performed.

We consider wires and gates in the fan-ins of “Gate1” and “Gate2”, up to some small
depth k. Any wire that lies in the intersection of these fan-ins is treated as control, e.g. wire
a. We construct a netlist slice including the gates between the source word and the target
word, as well as the gates in the aforementioned fan-ins. The fan-in gates are aggregated in
a backward traversal manner up to depth k or when a sequential logic cell such as a flip-flop
is reached. This ensures that the overall netlist slice forms a combinational circuit. This is
the netlist that we will symbolically evaluate, and is set up in the following way.

• Source word: each bit is assigned the symbolic value D.

• Control wires: If the number of control wires is greater than 3, we enumerate all com-
binations of wires of size 3 in the set of control wires. In each combination, we further
try all possible concrete assignments (assignments using 0s and 1s only) to the wires
involved. The choice of the constant value 3 is related to the insight mentioned above
that the synthesis tool will likely add wires capturing the evaluation of complicated
conditions.

• Other inputs: each wire is assigned the unknown value X.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 18

TryPropagate is the second piece of the “checking” stage of the algorithm. For each set
of concrete assignments to condition wires, the netlist slice is symbolically evaluated afresh
using the D-calculus. Because the netlist slice is a combinational circuit, symbolic evaluation
can be done efficiently by evaluating each gate in the slice in a topological order. If every bit
of the target word is evaluated to D or D for any concrete assignment to the control wires,
then the target word is considered as a true word. In this case, the propagation process
iterates and tries to use this new word to infer more words.

The overall algorithm is summarized in Algorithm 1. For simplicity, we show the only
parts for forward propagation. The algorithm iterates over the set of source words W . At
each iteration, a word ~w is removed from the source pool. FindForwardWordPairs then uses
the structural heuristics described in Figure 2.6a to find promising pairs of words to test for
propagation. For each pair of source word ~u and target word ~v, if no propagation has been
attempted so far from ~u to ~v, the pair is added to H and we proceed to checking if ~u can
propagate to ~v. This is achieved by SetupSymbolicEval which first sets up the netlist slice C ′

and control wires cw for symbolic evaluation as described in Figure 2.7, and TryPropagate
which then evaluates C ′. If propagation succeeds, this means we have verified ~u and ~v are
words and we add them to the set of inferred words W ′. Since ~v may be further propagated
forward, we add it to the set of source words W . The algorithm terminates when we have
tried all words that can be inferred from, i.e. W is depleted.

Algorithm 1 Symbolic Evaluation for Propagating Words Forward

1: Input: the set of candidate/source words W , netlist C.
2: Output: the set of inferred words W ′.
3: Initialize: set H to ∅.
4: while W 6= ∅ do
5: ~w = pop(W)
6: P = FindForwardWordPairs(~w)
7: for (~u,~v) ∈ P do
8: if (u, v) /∈ H then
9: Add (~u,~v) to H.

10: (C ′,cw) = SetupSymbolicEval(C,~u,~v)
11: if TryPropagate(C ′,cw,~u,~v) succeeds then
12: Add ~u,~v to W ′.
13: if ~v /∈ W then
14: Add ~v to W .
15: end if
16: end if
17: end if
18: end for
19: end while

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 19

2.3.3 Discussion

In this section, we remark on the potential limitation and robustness of the proposed tech-
niques, and discuss open problems.

• Order of bits in a word. In general, it is difficult to infer the ordering of bits in a word
as it was originally described (e.g, in RTL). Other than a few special cases, such as
in a carry chain or at the primary I/O, an arbitrary order is picked for a candidate
word during word propagation. Due to the generally large number of candidate words
produced, we hash any new word produced in the propagation step unordered. This
prunes out a significant portion of the search space since the search stops if the same
collection of bits is encountered. However, the tradeoff is that we may miss re-ordering
operations on words. This also has implications on function identification when a
candidate module is generated using propagated words as boundaries. For example, if
we want to match a candidate module to an adder, we need to know the correspondence
of the input and output bits of the module to those of the adder. We describe a
technique that addresses this problem in Section 2.4.2.

• Robustness of structural heuristics. Even though we start with an unstructured netlist,
we use structural heuristics to aid both word identification and propagation – grouping
wires based on shapes and grouping gates based on types of gates. This is based on our
observation that certain regularities still remain after the circuit is synthesized and op-
timized. For example, the same type of gates (and respectively the same input/output
pins of these gates) are often used when a word is propagated to another word. In
fact, this grouping heuristics allows us to identify instances when only part of a word
is propagated or when a word is propagated across one level of gates to two different
words. In our experience, the simple structural heuristic we use in Section 2.3.2 does
not result in much reduction in performance (number of words found). Alternatively,
we can expand the domain further by assigning each wire a different symbolic value,
and then check if the same value is obtained at an output of the gate(s) that the wire
leads to. However, in case several target wires take the same symbolic value, a similar
grouping based on gate and pin types would have to be performed to distinguish these
wires.

In the context of dealing with (maliciously) modified circuits, we assume that the
modification is introduced before logic synthesis (e.g., in the Verilog RTL description).
This means that the structure of the post-synthesis is not completely obfuscated, thus
allowing us to exploit structural similarities to heuristically guide our techniques. While
this assumption does not apply to all attacker models, it is largely valid from an
economic perspective. Changing the function of a post-synthesis netlist also requires
the attacker to satisfy other design constraints, such as timing and capacitive balancing.
Hence, while it is theorectically feasible to apply arbitrary modifications to a circuit at
the netlist (or even mask) level, the attacker may not have enough incentives to do so.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 20

• Reachability of propagating conditions. During word propagation, we check if a word
can be symbolically propagated to another word under some assignment to a set of
condition wires. Theorectically, one needs to check if these values are reachable. How-
ever, this would incur significant overhead in runtime since a large number of these
reachability tests are needed and we are dealing with netlists with thousands to millions
gates and registers. As a compromise, we use a small number of condition wires and
propagate words optimistically. This compromise is also motivated by the observation
that a conditional assignment in the RTL level typically translates to a single or a
few wires (even if the condition is a large Boolean expression) taking the values of the
condition in the netlist.

2.4 Functional Module Identification

In this section, we first describe our library of abstract components, and then present two
techniques, both based on reduction to formal verification problems, for finding a match of
a given netlist slice against the component library.

2.4.1 Library of Abstract Components

In general, a burden is placed on the end user to create an initial component library. While
this is a limitation for any library-based approach, common hardware design patterns [12]
and standardized interfaces are ideal starting components for the library. Our component
library currently contains the following types of circuits (the same type of circuits may
be parameterized by, for example, the width of inputs and outputs), ranging from simple
multiplexer to complex controllers.

• Multiplexer and demultiplexer

• Boolean operations, including NOT, AND, OR and XOR

• Comparator

• Shifter

• Modulo operation

• Adder and subtractor

• Multiplier and divider

• Counter

• Decoder and encoder

• Register file

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 21

• FIFO

• Arbiter

• Arithmetic core

• Communication interfaces/controller

• Memory controller

• DSP core

• Error correcting code

• Audio decoder

• GPIO

• Video controller

• Processor core

For ease of access and future exploration, each component is associated with the following
information.

• Number of input bits;

• Number of output bits;

• Port declaration in words, e.g. input in1 [7:0];

• Behavioral (RTL) Verilog description;

• Synthesized Verilog netlist using the IBM 12SOI cell library;

• A Verilog test bench;

• Formal specificaton S of the component.8

Currently, we have gathered a total of 1285 different circuits and stored them in a MySQL
database.
Remark. The simpler components are generally more useful due to the relatively smaller sizes
and smaller variations in implementations. A significant effort is also required if one wishes
to fully specify a circuit using formal specifications. However, we believe partial specification
is still useful, since knowing what properties a netlist slice satisfies (and does not satisfy) is
itself a stride towards understanding the high-level function of the netlist.

8We have only created formal specifications for the benchmarks used in the experimental section of this
report.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 22

2.4.2 Matching by Property Checking

In this section, we first show how temporal patterns mined from simulation or execution
traces of the circuits can be used to determine input-output correspondence. Afterwards, we
use model checking [11] to determine whether a given netlist slice satisfies the formal speci-
fication associated with an abstract component. The approach is illustrated in Figure 2.8.

Input-Output Correspondence

Figure 2.8: Overview of Component Matching by Property Checking

Given an unknown sub-circuit n and an abstract library component α, we must first
compute the correspondence between their input and output signals, if one exists. A brute-
force approach will have to try all possible permutations of the signals. In addition, the
numbers of inputs and outputs of the two circuits may not be identical. We use a heuristic
procedure for this step. First, a concrete instance of α (e.g. a reference circuit that satisfies
that formal specification of α), denoted as n ′ is obtained. Then, given the two circuits n
with interface signals VI = I ∪ O and n ′ with interface signals VI′ = I ′ ∪ O′, our method
tries to find the corresponding signals between VI and VI′.

Definition 2.2. Given two sets of signals A and B, the signal correspondence between A
and B is a bijective mapping σ : Ā → B̄, where Ā ⊆ A and B̄ ⊆ B. We say the mapping
is maximum if there does not exist another mapping σ′ : Ã → B̃ such that Ā ⊂ Ã ⊆ A or
B̄ ⊂ B̃ ⊆ B.

Our approach to finding a good signal correspondence (so that the inputs and outputs of
two equivalent circuits are matched correctly) on mining patterns from a set of input-output

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 23

traces of the two circuits. Other approaches, e.g., based on the structure of the circuits, are
also possible, and will be left to future work.

The key insight in our approach is that two signals are similar if they exhibit similar
behaviors in relation to other signals. In this paper, we measure the similarity of two signals
by checking if they satisfy some particular patterns (in relation to other signals) in the
traces. However, our framework is general – one can use other definitions of similarity such
as statistical measures.

In a nutshell, our method uses a two-step combination of pattern mining and graph
matching. The pattern mining step infers likely temporal properties of a circuit from input-
output traces of that circuit. It is important to note here that for the unknown component,
we can only observe the trace induced by a test bench at the chip-level. This means that it is
not possible to control the simulation as in the case of the known component. Consequently,
even if the unknown circuit is identical to the library component, the behaviors of the two
traces can be very different. In this work, we use pattern mining as a way to concisely
capture key features of a trace. The mined properties are represented in terms of a pattern
graph. Given circuits n and n ′, we compute pattern graphs for each of them. Then, a graph
matching procedure is used to compute the maximum common subgraph between these two
graphs, which yields the desired maximum bijection. We elaborate below.

Pattern Mining

We follow the approach described in [20] for mining temporal patterns from input-output
traces of a circuit. A pattern is defined over (delta) events, and is given either as a LTL
formula or a regular expression. An event e is a tuple 〈~s,~v, t〉, where ~s is a set of signals and
~v is the corresponding valuations at cycle t. We denote the valuation of a Boolean signal
s at cycle t as vs,t. A delta event, denoted ∆e, is an event such that at least one of its
constituent signals changes value from the previous valuation, i.e. ∆e := 〈~s,~v, t〉 such that
∃ s ∈ ~s, vs,t 6= vs,t−1. In this report, we use the follow simple pattern templates.

• Alternating (A) An alternating pattern between two delta events ∆a and ∆b is true
when each occurrence of ∆a alternates with an occurrence of ∆b. Note that this does
not mean ∆b follows ∆a immediately in the next cycle. This pattern can be described
by the regular expression (∆a∆b)∗.

• Next (X) The next pattern corresponds to the LTL formula
“G (∆a⇒ X ∆b).” One can easily generalize this pattern to fixed-delay pairs.

• Until (U) The until pattern can be used to describe behaviors such as “the request
line stays high until a response is received.” Figure 2.9 shows a trace where this pattern
is satisfied. Formally, the LTL formula is “G (a0→1 ⇒ X (aU b0→1)).”

• Eventual (F) The eventual pattern can be described by the LTL formula “G (∆a⇒
X F ∆b).”

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 24

Figure 2.9: Request stays high until a response is received.

The idea of pattern mining is similar to online monitoring. For each instantiation of these
patterns templates (patterns over concrete delta events), one can generate a deterministic
monitor that checks if the pattern is violated by some given trace. A pattern is said to be
mined from a trace (or a collection of traces) if it is not violated by the trace(s). An approach
for evaluating these instantiations efficiently is described in [20].

Now given a set of input-output traces and a pattern template, our technique first gen-
erates a pattern graph G = (V,E ⊆ V × V). A vertex v ∈ V represents an event over I ∪O.
For example, a vertex labeled with ∆a0→1 represents the event of signal a transitioning from
0 to 1. There is a directed edge e = (u, v) ∈ E if and only if the pattern involving the delta
events represented by u and v is satisfied in all traces.

As an example, let α be the arbiter described in Section 2.2.1. Suppose n uses a round-
robin priority scheme and n ′ uses a fixed priority scheme for arbitration.

Given the input-output traces of n and n ′ and the Until pattern, suppose that Figure 2.10
shows the pattern graphs generated for n and n ′.9

Figure 2.10: Arbiter Pattern Graphs

Table 2.1 shows how the named signals a-d of the round-robin priority arbiter and w-z of
the fixed-priority arbiter correspond to request/grant signals r0,r1,g0, and g1 as described in
Sec. 2.2.1. (Our task is to compute this correspondence, but we provide it here so that the
reader can follow this example.) Thus, for example, the edges from a0→1 to c0→1 and from

9In the case where a pattern graphs is composed of multiple disconnected subgraphs, we use the biggest
subgraph as the pattern graph.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 25

w0→1 to y0→1 are instances of the property G [r00→1 ⇒ X (r0 U g00→1)] (request stays high
until the corresponding grant is asserted).

Table 2.1: Signal Names in Arbiter Versions

Signals Round-robin Fixed
r0 a w
r1 b x
g0 c y
g1 d z

Graph Matching:
A graph G′ = (V ′, E ′) is an induced subgraph of G = (V,E) if V ′ ⊆ V and E ′ =

E∩ (V ′×V ′). G is said to be isomorphic to G′ if there exists a bijective function f : V → V ′

such that ∀ (u, v) ∈ E ⇐⇒ (f(u), f(v)) ∈ E ′.
Given the two pattern graphs G and G′ corresponding to n and n ′ respectively, a common

subgraph is a graph which is isomorphic to induced subgraphs of G and G′. We wish to find
a maximum common subgraph (MCS) between the two graphs, i.e. a common subgraph
between G and G′ that has the maximum number of vertices.

The key observation here is that the bijective function f that defines the MCS is exactly
the signal correspondence mapping σ that we are looking for. In fact, when the vertices
represent delta events, our approach can identify corresponding signals even if they are
implemented with opposite polarities in the two circuits.

Consider our arbiter example. Figure 2.11 shows a maximum common subgraph of the
pattern graphs given in Figure 2.10 illustrating all the request and response signals are
mapped correctly using MCS approach.

Figure 2.11: MCS in the two arbiter pattern graphs

The MCS problem is known to be NP-hard [15]. Most complete approaches are based on
reformulating the problem into a maximum clique problem in a compatibility graph between
G and G′ [13]. The compatibility graph is a product graph of G and G′ such that a vertex
in the product graph is a pair of vertices (i, k) where i ∈ V and k ∈ V ′. There is an edge
from (i, k) to (j, l) (i 6= j and k 6= l) if and only if one of the following conditions hold:

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 26

• (i, j) ∈ E and (k, l) ∈ E ′;

• (i, j) /∈ E and (k, l) /∈ E ′.

In a directed graph G, we say two vertices u and v are connected if both (u, v) ∈ E and
(v, u) ∈ E. A clique is then a subset of vertices such that every pair of vertices in this set
are connected. A maximum clique is a clique with the most number of vertices.

We omit details of how the maximum clique problem is solved but refer the readers to [8].
The technique can scale to graphs with hundreds of vertices. Solving the maximum clique
problem correctly generates the signal correspondence as depicted in Table 2.1.

Matching by Property Checking

If all inputs and outputs of the abstract component α appearing in its specification S are
mapped onto some inputs and outputs of the unknown circuit n , then we proceed to the
next step, where we verify whether n satisfies S. In our approach, we perform this step using
model checking [11]. (If S were a reference circuit, it is possible to replace the model checker
with a sequential equivalence checker.) If n satisfies S, then we terminate and report that n
matches the component α. Otherwise, we report that it does not match (and move to trying
to match n to a different abstract component).

However, if some inputs/outputs of α appearing in S are not matched to inputs/outputs
of n , then we stop and declare that there is no match between n and α. Note that this
approach is conservative: it is possible for n to be an instance of α but not pass this phase,
since our input-output signal correspondence algorithm is heuristic. However, it is important
to note that our matching approach is sound due to the use of formal verification.

While formal verification may not scale to the full circuit, we envision applying this
procedure mainly to netlist slices with hundreds to thousands of library cells, which is within
the capacity of state-of-the-art model checkers today. We demonstrate our approach on
benchmarks from OpenCores, as discussed in Section 2.5.3.

Lastly, it should be noted that while it may be difficult to write specifications that account
for all possible behaviors of each library component, it is generally possible to distinguish one
design block from another using only a few logical specifications (e.g. distinguish an arbiter
from an adder). We believe the automation that we provide in the proposed approach can
benefit reverse-engineering greatly, as it is still mostly a manual process today.

2.4.3 Matching by Conditional Equivalence Checking

The previous section described an approach when a candidate module with proper boundaries
is mapped to components in a predefined library. However, it is in general difficult to carve
out such perfect modules. Additionally, we observe that due to optimizations performed
during logic synthesis, netlist slices with different functions can overlap, i.e. some gates are
shared between slices. For example, instead of having a separate set of gates implementing
each opcode function, a single set of gates between the inputs and outputs of an ALU unit

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 27

will suffice for all operations, each having overlapping logical block with another. In fact,
gate-sharing can be a result of design choice and customization. The ripple-carry adder-
subtractor design demonstrates this phenomenon where a single signal value can convert the
adder to a subtractor. As a result, extra inputs are present when a netlist slice is carved
out. Consequently, we can only reason about the function of the netlist slice when these side
inputs are properly set. This means depending on the assignment to these side inputs, the
netlist may or may not behave according to a certain operation, e.g. addition or subtraction.
In this section, we describe an approach that addreses this problem, based on modifying the
traditional equivalence checking problem into a quantified equivalence checking problem.

Generating Candidate Netlist Slices

Recall that we have all the words that can be inferred by propagation, we are now interested
in finding computation structures that operate on these words. The main idea is to cut out
the portion of the netlist that lies between words, and then check if this structure implements
a particular word operation. We currently support only operations that are combinational
logic. However, these still include many that are commonly found in circuit designs, such as
addition, subtraction, Boolean operation (e.g. NOT, AND, OR, XOR) and shifting/rotation.
Note that the user can extend this set with other word operations by providing reference
models for those operations.

To extract the netlist between words, we first arrange the words in topological order
between sequential boundaries. For example, given three words wa, wb, wc of the same width
such that wa and wb are followed by wc in the topological order, and we are interested in
checking if wc = wa + wb modulo a carry-in, we can form a netlist slice by using the gates
between wa and wc and those between wb and wc.

QBF Formulation

Our solution is to model the problem as a Quantified Boolean Formula (QBF) and make use
of state-of-the-art QBF solvers to solve it. This is different from the traditional SAT-based
formulation for combintional equivalence checking [16], with the side inputs existentially
quantified. QBF is the canonical complete problem for PSPACE. It extends propositional
formulas by including the universal quantifier ∀ and existential quantifier ∃. The particular
instance of QBF we have formulated here involves a single alternation of ∀ and ∃, which is
also known as 2QBF. Figure 2.12 illustrates the miter construction for creating the 2QBF
formula.

The reference circuit for the word operation we are interested in checking has inputs
X. However, the extracted netlist slice also contains side inputs Y in addition to X. We
can describe the miter circuit (as typically done for SAT-based combinational equivalence
checking [16] in the verification literature) with a single Boolean formula φ such that φ
is true if and only if the two circuits are equivalent. The intuition behind the existential
quantification over Y is that if the netlist implements the function of the reference circuit,

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 28

Figure 2.12: Miter Construction and QBF Formulation

then there must exist a way to configure the side inputs for it to do so. For the previous
example of checking if wc = wa + wb, we now have inputs as wa and wb and outputs as wc.
The formula φ desribes the comparison of the netlist with the disjunction of two circuits,
one implements the addition with carry-in equal to 1, and the other with carry-in equal to
0.10

2.4.4 Discussion

We remark on the potential limitation of the function identification techniques and discuss
open problems.

• Candidate module generation. We only partially address this problem in this paper
– combinational blocks are carved out between words. However, the success of such
matching by verification approach depends heavily on finding the correct input/output
interfaces. In the case of matching by property checking, a partially matched module
(when only a subset of the properties of the abstract component is satisfied) is still
useful. In general, this is an open problem for us and we plan to explore it in future
work.

• Robustness of pattern mining for solving I/O correspondence. We use pattern mining
in this work. However, in general, any signature generation technique is applicable. In
our experience, the simple pattern templates we use correspond to common hardware
behaviorable patterns and thus are effective in capturing them.

• QBF formulation. Similar to word propagation, when the QBF procedure produces
a satisfying assignment to the side inputs, the reachability of these values needs to

10We consider two possible reference circuits that the netlist can be matched to because the carry-in bit
is not a primary input to the miter circuit.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 29

Table 2.2: Benchmark Netitemize Information

Design Gates Nets Latches Description
router 896 984 182 CMP Router
open8 1807 1812 237 Open8 CPU

Cpu8080 2258 2368 243 8080 CPU
MIPS16 6986 11110 4380 MIPS-like core
oc8051 8093 10210 2748 8051 µcontroller

RISC FPU 14291 15740 3097 RISC FPU
BigSoC 375090 231736 34318 SoC

be checked. Again, due to scalability issues, we optimistically accept any satisfying
assignment. Another limitation of the current QBF formulation is that it only applies
to combinational netlist slices. For sequential circuits, we hypothesize that one can
use a bounded enrolling to leverage the same QBF approach, and this is a subject of
future work.

2.5 Experimental Results

We have developed an inference tool using Python and C++ that implements the algorithms
described in this paper. The tool takes as input a synthesized netlist, analyzes it and
produces as output word-level datapaths as well as a set of annotated netlist slices. The tool
uses DepQBF [24] as the backend solver for solving QBFs.

2.5.1 Benchmarks

Table 2.2 summarizes the netlist information of the designs that are used in this paper. The
generic name BigSoC is used for confidentiality reasons. All the designs were synthesized
with an IBM/ARM cell library for a 45nm SOI process using the Synopsys Design Compiler
with its default optimization setting.

The CMP router is a simplified version of the chip-multiprocessor router proposed in
[28]. BigSoC is a system-on-a-chip design which consists of 7 subsystems: a 32-bit ARM-
compatible RISC processor, a Singular Value Decomposition module, a SPI interface, a
UART interface, an I2C interface, a VGA controller and a memory controller. The subsys-
tems are further interconnected through an AXI4S switch. The rest of the benchmarks are
available on OpenCores [4].

We also separately evaluate the “matching-by-property-checking” approach and used the
following three circuits obtained from OpenCores [4] in our experiments.

• WISHBONE-compatible SPI (WB-SPI) [7]

• WISHBONE-compatible SimpleSPI (WB-SimpleSPI) [5]

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 30

• WISHBONE-compatible I2C (WB-I2C) [2]

The serial peripheral interface (SPI) is a full duplex, serial communication link. Devices
operate in either master or slave mode. Typically there is a single master device and one
or more slave devices. SPI specifies four logic signals: SCLK (serial clock), MOSI (master
output/slave input), MISO (master input, slave output), and SS (slave select). The SS signal
is only necessary if more than one slave device is connected to the master. To initiate a data
transfer, the SS pin for the desired slave is first pulled low. Then data are clocked from the
master to the slave via the MOSI port and data are clocked from the slave to the master
via the MISO port. When the transfer is complete, the SS pin is pulled high. SimpleSPI is
a simplified version which supports only one master and one slave.

The inter-integrated circuit or I2C is a serial two-wire communication bus. Devices
operate in either master or slave mode, similar to SPI; however, there can be multiple
masters on an I2C bus. The bus is made up of two logic signals: SCL (clock) and SDA
(data). A typical data transfer starts with a master sending a START bit along with a 7-bit
address for the slave it wishes to communicate with, and a bit indicating a read or write
operation. The slave responds with an ACK bit and proceeds to operate in either read or
write mode, depending on the master’s request. Once the transmission is over, the master
sends a STOP bit.

WISHBONE is a communication interface for IP cores that enhances design reuse by
enforcing compatibility between cores. Furthermore, WISHBONE is open source, which
makes it easy for engineers to share hardware designs. As such, many projects on OpenCores,
a website dedicated to open source hardware designs, include a WISHBONE interface. The
protocol supports handshaking, single read/write cycles, block read/write cycles, and read-
modify-write cycles. All three circuits are supposed to be WISHBONE compatible.

In this part of the experiment, we consider the scenario where the WISHBONE proto-
col [6] has been pre-characterized as a library component and the WB-SPI circuit is given as
a concrete implementation of the WISHBONE protocol. We treat the WB-SimpleSPI and
WB-I2C as unknown candidate netlist slices. The goal is to determine whether an unknown
circuit also implements the WISHBONE interface.

2.5.2 Finding Word-Level Flow

Table 2.3 summarizes the results of applying WordRev to the netlist designs. Columns 2
and 3 record the number of input and output words used respectively. Column 4 records
the number of candidate words identified using the algorithms in Section 2.3.1. Column 5
is the number of words produced by word propagation. Column 6 is the runtime for word
propagation in minutes. In all experiments, we limited the search to only words between 4
and 32 bits wide.

Input and output words were assumed to be known, since these are at the I/O of the
design. Candidate words were selected from the word identification step described in Sec-
tion 2.3.1. For BigSoC, we only selected 16 32-bit words identified by using the bitslice

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 31

Table 2.3: WordRev Statistics

Design Input Output Cand. Prop. Runtime (min)
router 2 2 0 54 1.3
Open8 2 2 22 98 80.0

cpu8080 1 2 6 174 114.2
MIPS16 0 1 2 4 1.0
oc8051 6 7 12 113 329.9

RISC FPU 1 2 128 142 154.6
BigSoC 1 4 16 865 311.2

aggregation algorithm in Section 2.3.1. This is because a lot of words were identified as
candidate words, which caused the tool to timeout as a result of trying to propagate each
of them. Additionally, we consider words that can be propagated to be more valuable than
just identified words, since propagation indicates that these arrays of bits are more likely to
be operated together at the RTL level.
Case Study: CMP Router

In this section, we use the CMP router to evaluate the effectiveness of WordRev in detail.
Particularly, we focus on the following analysis.

• Usefulness of the flow of word-level information presented as a directed graph.

• Effect of the netlist being synthesized from different cell libraries.

• Effect of the netlist being synthesized from the same cell library but with different
optimization settings.

For convenience, we called the router netlist used in the previous section the “TR Router”,
the resulting netlist synthesized from a different cell library the “TS Router”, and the opti-
mized netlist the “Optimized TR Router”.

The overview of the CMP router design is illustrated in Figure 2.13. It is a composition
of four high-level modules. The input controller comprises a set of FIFOs buffering incoming
flits and interacting with the arbiter. A flit is a flow control unit. A data packet is composed
of multiple flits. In this implementation, a flit has 12 bits, with the lower two bits as a
header (used for channel reservation) and the remaining 10 bits as address (6 bits) and data
(4 bits). Each input controller contains a circular FIFO buffer of 4 flits deep. When the
arbiter grants access to a particular output port, it sends a signal to the input controller to
release the flits from the buffers, and at the same time, it sends the allocation information to
the encoder which in turn configures the crossbar to route the flits to the appropriate output
port.

Word-Level Datapath: Figure 2.14 shows the word-level datapath as a directed graph
produced by our tool. We have highlighted regions of the graph that correspond to high-
level modules of the router as described previously. The nodes in yellow are the known words

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 32

Figure 2.13: CMP Router Comprising Four High-Level Modules

that we start with at the primary input and output of the router. The number in each node
denotes the numbering of the word (e.g. “w11”) followed by the width of the word (e.g. 12
for “w11”). If a node is contained in another node, it indicates that the inner word is a
subword of the outer word.

The top half of the word graph is in fact isomorphic to the bottom half, each corre-
sponding to a port of the router. The input controller FIFO is the subgraph that has two
special nodes, marked as “Writing into FIFO” and “Reading from FIFO”. From the first
node, which is the write pointer of the FIFO, it splits to four other words. Each of these
words is then latched (as indicated by the red arrow). The latched output has three possible
out-going paths: one going back to the itself (typical for state holding elements), one goes
to the write pointer of the FIFO (multiplexed to determine whether it will get overwritten),
and the last one goes to the read pointer of the FIFO (another multiplexing for determining
which flit will be read). The crossbar on the right is easier to recognize – it consists of
two 12-bit words that interweave to two other 12-bit words downstream. While the module
identification described here was performed manually, comparing to Figure 2.13, the word
graph in Figure 2.14 essentially reduces the router netlist with approximately 1100 cells to
a single graph (which can fit on a page) that captures most aspects of the data-flow and
architectural features of the router. This allows to a human analyst to look for patterns
at a higher level of abstraction. Moreover, the word graph provides a structure for further
automation, such as module identification, which we plan to explore in future work.

Different Cell Libraries: “TS Router” had about 4% less gates than “TR Router”, but
had the same number of latches.11 Applying the same word propagation algorithm to “TS
Router”, 52 (instead of 54) words were found. Comparing the words inferred in the two

11The “TS” and “TR” cell libraries differ only in the layout implementation, where one is speed optimized
and the other is size optimized. Their logical functions are the same.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 33

Figure 2.14: Word-Level Datapath for the Same CMP Router Design

netlists directly was difficult since the wires were named differently. However, upon close
examination of the word graphs, we verified that the topology of the “TS Router” word
graph is almost identifical to that of “TR Router”. The only differences were at the read
and write pointers of the FIFOs. In addition, the widths of the words were also the same,
showing the splitting of I/O words into words of 10 bits wide. This shows that our heuristic
for finding target words to propagate is robust to small change in the cell library used in
logic synthesis.

Different Synthesis Parameters: “Optimized TR Router” contained about 25% less gates
than “TR Router”.12 In addition, it used 176 instead of 182 latches. In this case, WordRev
found 50 words, 4 less than the number of words found in “TR Router”. We analyzed the
word graph generated for “Optimized TR Router” and found interesting discrepancies. While
the topology of the graph remained largely the same, which means the key features were

12 “Optimized TR Router” was the result of using the additional Synopsys “compile ultra” command,
which does extra optimizations for high-performance (i.e., high clock frequency) designs.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 34

again visible, the words being propagated were only 4 bits wide. In fact, they correspond to
the 4 data bits in each flit. In “TR Router”, both the 6-bit wide address field and the 4-bit
wide data field were propagated together. This shows that while our algorithm can extract
the word-level dataflow of a netlist, its performance can be influenced by the optimization
setting during logic synthesis.

2.5.3 Functional Module Identification

QBF-Based Matching

In this section, we focus on reporting results that demonstrate the effectiveness of using the
QBF formulation to identify structures and conditions in reasoning various word operations.

Table 2.4: QBF Statistics for Different Operations

Operation Num of Vars Num of Clauses Runtime (s)
Addition 4525 11974 60

Subtraction 4438 11744 50
Rotate-right 4332 11416 30
Rotate-left 4332 11416 30

Not 4333 11415 64
And 4337 11428 34
Or 4337 11428 51

The OC8051 microcontroller is widely used in many embedded system products. It con-
tains an 8-bit CPU optimized for control applications. Using word identification techniques
described in Section 2.3.1 and the structure extraction process described in Section 2.4.3, we
extracted a netlist slice that was part of the ALU unit of the microcontroller. This netlist
slice contained 435 12SOI gates. In addition to the two 8-bit input words, the netlist slice
had 87 other side inputs. We formulated a QBF problem for each of the word-level operation
(each word is 8-bit wide and each operation corresponds to a specific ALU opcode) shown in
Table 2.4, and verified that the single netlist slice could implement that operation by making
appropriate assignments to the side inputs.

Property Checking with Unknown I/O Correspondence

Signal Correspondence:
As described in Section 2.4.2, we followed the approach in [20] for generating the pattern

graph by mining the Until pattern on the simulation traces of each circuit. The simulation
traces were produced by the test benches provided on OpenCores. We further assume the
clock, reset (wb rst i) and data-path signals at the interface are already identified (these
are easy to identify by structural methods). Next, a compatibility graph was generated for

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 35

the pattern graph of the unknown circuit and WB-SPI.13 The time taken to generate each
pattern graph was under a second. We used the program Cliquer [27] which implements an
exact branch-and-bound algorithm developed by Patric Österg̊ard for finding the maximum
clique in a graph. The time taken to find a maximum clique in the compatibility graph was
under a second in all instances.

Table 2.5 shows the signal map derived between SPI and SimpleSPI by using the first
MCS produced. All the WB-related signals were mapped correctly. In addition, two SPI-
related signals were also mapped correctly. The signal names used here were taken from
the respective RTL files and only serve as an illustration. In an actual reverse engineering
exercise, the signal names of the unknown circuit will be arbitrary. These results were
obtained despite the fact that the traces were generated by two test benches with very
different behaviors.

Table 2.5: Signal Mapping between WB-SPI and WB-SimpleSPI

WB-SPI WB-SimpleSPI
miso pad i miso i
wb ack o ack o
sclk pad o sck o
wb we i we i
wb cyc i cyc i
wb stb i stb i

Table 2.6 shows the signal map derived between SPI and I2C by also using the first MCS
produced.

Table 2.6: Signal Mapping between WB-SPI and WB-I2C

WB-SPI WB-I2C
wb we i wb we i
wb cyc i wb cyc i
wb ack o wb ack o

All the WB-related signal were again matched correctly. However, the wb stb i signal
was not matched. It was identified by iterating the approach with the Alternating pattern,
given the current matches. This suggests an incremental approach to our framework but
this will be left to future work. On the other hand, there were also four other incorrectly
matched signals. This is because other than being both WISHBONE compatible, the two
circuits were actually implementing different functions. The next step which checks these
signals against their logical specifications will eliminate the incorrect matches.

13Observe that the pattern graph only needs to be generated once for the library component.

CHAPTER 2. REVERSE ENGINEERING GATE-LEVEL NETLISTS 36

Matching by Verification:
We focused on specifying the slave interface of the WISHBONE protocol, although we

used properties of the master interface as assumptions.
At a minimum, a slave interface requires the following signals: wb ack o, wb clk i,

wb cyc i, wb stb i, and wb rst i. Since the WISHBONE interface does not explicitly re-
quire the data lines, wb dat o and wb dat i, the only properties we could specify were about
the reset operation and the handshaking protocol.

The properties for the reset operation and handshaking protocol are as follows:

• G (wb rst i⇒ X ¬wb ack o)

• G ¬(wb ack o ∧X wb ack o)

• G ((wb cyc i ∧ wb stb i)⇒ F wb ack o)

The assumptions we made on the master interface, part of the specification, are as follows:

• G (wb rst i⇒ (¬wb stb i ∧ ¬wb cyc i))

• G (wb stb i⇒ wb cyc i)

These LTL properties were manually translated from the WISHBONE documentation
Rev. B.4 [6].

Taking the netlist descriptions of WB-SimpleSPI and WB-I2C, we translated them to
the SMV format and verified the properties described above using the Cadence SMV model
checker [1]. For both circuits, all the properties passed. This confirmed that both indeed
implemented the WISHBONE interface. The verification times were under 0.1 second for
either benchmark.

37

Chapter 3

Conclusion

3.1 Summary

In this report, we have presented a portfolio of novel techniques for reverse engineering circuit
netlists to their high-level descriptions. We are also the first to provide a formal definition for
the netlist reverse engineering problem (REHLD), based on the notion of matching against
abstract components. Many of the techniques proposed here have connections to techniques
used in formal verification. For example, symbolic evaluation is used to infer word propaga-
tion, and property checking and equivalence checking are used to match a unknown circuit
to a known abstract component. These techniques allow us to cope with challenges such as
the netlist being unstructured and an intractably large implementation space exacerbated
by scarce documentation.

While reverse engineering does not directly address the problems of trojan detection
and isolation, it enables one to perform more targeted and comprehensive analysis once the
high-level description of the netlist is obtained. We envision the techniques proposed in this
report will be applicable in the grand picture of ensuring the integrity of a fabricated circuit,
and will be a valuable complement to “dynamic” techniques that exist in the literature.

We have proposed an initial and integrated solution to the reverse engineering problem
and the experimental results are promising. In fact, we tackled netlists that are orders
of magnitude larger than those considered in previous reverse engineering approaches (e.g.
[17]). However, we also recognize the potential limitations of the proposed techniques, as
described in Section 2.3.3 and Section 2.4.4. We plan to address these problems in future
work.

3.2 Acknowledgement

The author would like to thank his collaborators Prof. Sanjit A. Seshia, Zach Wasson and
Wei Yang Tan from UC Berkeley, Adriá Gàscon, Dr. Natarajan Shankar and Dr. Ashish
Tiwari from SRI International, and Pramod Subramanyan and Prof. Sharad Malik from

CHAPTER 3. CONCLUSION 38

Princeton University. Some of the work done in this report could not have been possible
without their assistance and guidance. In particular, the observation that setting a few
“control” wires is likely to be sufficient for propagating the values of a word was first made
by Dr. Ashish Tiwari. The work on word propagation also benefited much from discussion
and working closely with Adriá Gàscon. The idea of using shapehashing is due to Dr.
Natarajan Shankar. The author would like to thank Pramod Subramanyan and Prof. Sharad
Malik from Princeton University for the help with their tool, BSIM, which was used in the
word identification step. The author would also like to thank Prof. Sanjit A. Seshia and
Prof. Robert K. Brayton for reviewing this report and giving insightful feedback. The
work described in this report was supported in part by Defense Advanced Research Projects
Agency (DARPA) under the IRIS program, and by the Hellman Family Faculty Fund.

39

Bibliography

[1] Cadence smv. http://www.kenmcmil.com/smv.html.

[2] I2c controller core. http://opencores.com/project,i2c.

[3] Integrity and reliability of integrated circuits (iris). http://www.darpa.mil/Our_

Work/MTO/Programs/Integrity_and_Reliability_of_Integrated_Circuits_

(IRIS).aspx.

[4] Opencores. http://opencores.org/.

[5] Simple spi core. http://opencores.com/project,simple_spi.

[6] Soc interconnection: Wishbone. http://opencores.org/opencores,wishbone.

[7] Spi core. http://opencores.com/project,spi.

[8] Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary graph.
SIAM J. Comput., 15:1054–1068, November 1986.

[9] R.E. Bryant. Symbolic simulation-techniques and applications. In Design Automation
Conference, 1990. Proceedings., 27th ACM/IEEE, pages 517 –521, Jun 1990.

[10] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam. Reducing struc-
tural bias in technology mapping. In Computer-Aided Design, 2005. ICCAD-2005.
IEEE/ACM International Conference on, pages 519 – 526, Nov 2005.

[11] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 2000.

[12] A. DeHon, J. Adams, M. DeLorimier, N. Kapre, Y. Matsuda, H. Naeimi, M. Vanier,
and M. Wrighton. Design patterns for reconfigurable computing. In Field-Programmable
Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on,
pages 13 – 23, april 2004.

[13] P. J. Durand, R. Pasari, J. W. Baker, and C. Tsai. An efficient algorithm for similarity
analysis of molecules. Internet Journal of Chemistry, 1999.

BIBLIOGRAPHY 40

[14] Semiconductor Equipment and Materials Industry (SEMI). Ip challenges for the semi-
conductor equipment and materials industry. http://www.semi.org/sites/semi.org/
files/docs/2012_IP_White_Paper.pdf. 2012.

[15] M. R. Garey and D. S. Johnson. Computer and intractability. Freeman, 1979.

[16] E. Goldberg, M. Prasad, and R. Brayton. Using sat for combinational equivalence
checking. In Proceedings of the conference on Design, automation and test in Europe,
DATE ’01, pages 114–121, Piscataway, NJ, USA, 2001. IEEE Press.

[17] Mark C. Hansen, Hakan Yalcin, and John P. Hayes. Unveiling the ISCAS-85 bench-
marks: A case study in reverse engineering. IEEE Design & Test of Computers,
16(3):72–80, 1999.

[18] Matthew Hicks, Murph Finnicum, Samuel T. King, Milo M. K. Martin, and Jonathan M.
Smith. Overcoming an untrusted computing base: Detecting and removing malicious
hardware automatically. In Security and Privacy (SP), 2010 IEEE Symposium on, pages
159 –172, May 2010.

[19] Y. Jin, N. Kupp, and Y. Makris. Experiences in hardware trojan design and implemen-
tation. In Hardware-Oriented Security and Trust, 2009. HOST ’09. IEEE International
Workshop on, pages 50 –57, july 2009.

[20] Wenchao Li, Alessandro Forin, and Sanjit A. Seshia. Scalable specification mining for
verification and diagnosis. In DAC ’10, pages 755–760, 2010.

[21] Wenchao Li, Adria Gascon, Pramod Subramanyan, Wei Yang Tan, Ashish Tiwari,
Sharad Malik, Natarajan Shankar, and Sanjit A. Seshia. Wordrev: Finding word-level
structures in a sea of bit-level gates. In IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), June 2013.

[22] Wenchao Li, Zach Wasson, and Sanjit A. Seshia. Reverse engineering circuits using be-
havioral pattern mining. In Proceedings of the IEEE Conference on Hardware-Oriented
Security and Trust (HOST), Jun 2012.

[23] Lang Lin, Markus Kasper, Tim Gneysu, Christof Paar, and Wayne Burleson. Trojan
side-channels: Lightweight hardware trojans through side-channel engineering. In Cryp-
tographic Hardware and Embedded Systems - CHES 2009, 11th International Workshop,
Lausanne, Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes
in Computer Science, pages 382–395. Springer, 2009.

[24] Florian Lonsing and Armin Biere. Depqbf: A dependency-aware qbf solver. JSAT,
7(2-3):71–76, 2010.

BIBLIOGRAPHY 41

[25] J. Mohnke, P. Molitor, and S. Malik. Establishing latch correspondence for sequen-
tial circuits using distinguishing signatures. In MidWest Symposium on Circuits and
Systems, pages 472–476, 1997.

[26] Janette Mohnke and Sharad Malik. Permutation and phase independent boolean com-
parison. In European Conference on Design Automation, Feb 1993.

[27] Sampo Niskanen and Patric Österg̊ard. Cliquer - routines for clique searching. http:
//users.tkk.fi/pat/cliquer.html.

[28] Li-Shiuan Peh. Flow control and micro-architectural mechanisms for extending the per-
formance of interconnection networks. PhD thesis, 2001.

[29] Amir Pnueli. The temporal logic of programs. pages 46–57, 1977.

[30] J. Paul Roth. Computer Logic, Testing and Verification. W. H. Freeman & Co., New
York, NY, USA, 1980.

[31] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. EPIC: Ending piracy of
integrated circuits. In Proc. Design, Automation and Test in Europe (DATE), pages
1069–1074, 2008.

[32] Kristin Y. Rozier. Survey: Linear temporal logic symbolic model checking. Comput.
Sci. Rev., 5(2):163–203, May 2011.

[33] Yiqiong Shi, Chan Wai Ting, Bah-Hwee Gwee, and Ye Ren. A highly efficient method
for extracting FSMs from flattened gate-level netlist. In IEEE International Symposium
on Circuits and Systems (ISCAS 2010), pages 2610–2613, 2010.

[34] C. Sturton, M. Hicks, D. Wagner, and S.T. King. Defeating uci: Building stealthy and
malicious hardware. In Security and Privacy (SP), IEEE Symposium on, pages 64 –77,
May 2011.

[35] Pramod Subramanyan, Nestan Tsiskaridze, Kanika Pasricha, Dillon Reisman, Adriana
Susnea, and Sharad Malik. Reverse engineering digital circuits using functional analysis.
In Design Automation and Test in Europe (DATE), Mar 2013.

[36] M. Tehranipour and F. Koushanfar. A survey of trojan taxonomy and detection. IEEE
Design and Test of Computers, 27:10 – 25, 2010 2010.

[37] Wolfgang Thomas. Automata on infinite objects. In Handbook of Theoretical Computer
Science, pages 133–164. Elsevier, 1990.

[38] Randy Torrance and Dick James. The state-of-the-art in IC reverse engineering. In 11th
International Workshop on Cryptographic Hardware and Embedded Systems (CHES),
volume 5747 of Lecture Notes in Computer Science, pages 363–381, 2009.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Assumptions
	Related Work

	Reverse Engineering Gate-Level Netlists
	Solution Overview
	Word-Level Datapath Extraction
	Function Identification
	Example – CMP Router

	Problem Definition
	Preliminaries
	Circuits and Netlists
	Word-Level Datapath
	Formal Specification
	Abstract Components
	High-Level Description

	Problem Definition

	Finding Word-Level Datapath
	Word Identification
	Bitslice Aggregation
	Shape Hashing

	Word Propagation
	Discussion

	Functional Module Identification
	Library of Abstract Components
	Matching by Property Checking
	Input-Output Correspondence
	Pattern Mining
	Matching by Property Checking

	Matching by Conditional Equivalence Checking
	Generating Candidate Netlist Slices
	QBF Formulation

	Discussion

	Experimental Results
	Benchmarks
	Finding Word-Level Flow
	Functional Module Identification
	QBF-Based Matching
	Property Checking with Unknown I/O Correspondence

	Conclusion
	Summary
	Acknowledgement

	Bibliography

